If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2=3
We move all terms to the left:
11x^2-(3)=0
a = 11; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·11·(-3)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*11}=\frac{0-2\sqrt{33}}{22} =-\frac{2\sqrt{33}}{22} =-\frac{\sqrt{33}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*11}=\frac{0+2\sqrt{33}}{22} =\frac{2\sqrt{33}}{22} =\frac{\sqrt{33}}{11} $
| 2(b+3)+3b=31 | | 2x-3=x1 | | -4(2l+5)=-4 | | 3(b+(-4))=5b+(-2) | | -2x-3=-(4×9) | | -10(s+1)=-54 | | 2w-3(4w+7)=w+23 | | 6(l+2)=6 | | -2+7=-3n | | 2(4y+3)=62 | | 8f=7f+8 | | 10x+80=20x | | 6(2l+4)=48 | | 3x+6=7x+42 | | 4z÷7-1=-7 | | 12b=86 | | 3)4x-2)=8(x-6 | | 3c=180 | | x/1.2=12/7.2 | | x+6=3x+24 | | 180=6x+15 | | 7m=-15+2m | | x+2=4x+20 | | 5x(7x+16)=90 | | -x+52=3x+24 | | X+12=-2x+10 | | 3x+7=7x+31 | | x+25=5x+61 | | 3x+14=7x+38 | | .2y=700+.2y | | 2(x=4)=2(-8-x)-2x | | X+.05x=450 |